$\newcommand{\R}{\mathbf{R}} \newcommand{\C}{\mathbf{C}} \newcommand{\A}{\mathcal{A}} \newcommand{\cF}{\mathcal{F}} \newcommand{\SPAN}{\text{span}} \newcommand{\B}{\mathcal{B}} \newcommand{\calL}{\mathcal{L}} \renewcommand{\u}{\mathbf{u}} \newcommand{\uu}{\mathbf{u}} \newcommand{\e}{\mathbf{e}} \newcommand{\vv}{\mathbf{v}} \newcommand{\w}{\mathbf{w}} \newcommand{\ww}{\mathbf{w}} \newcommand{\x}{\mathbf{x}} \newcommand{\xx}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\yy}{\mathbf{y}} \newcommand{\Cbar}{\overline{\mathbf{C}}} \newcommand{\Dbar}{\overline{\mathbf{D}}} \newcommand{\X}{\mathbf{X}} \newcommand{\Y}{\mathbf{Y}}$ \newcommand{\Xbar}{\widehat{\mathbf{X}}} \newcommand{\Ybar}{\widehat{\mathbf{Y}}} \newcommand{\zz}{\mathbf{z}} \renewcommand{\a}{\mathbf{a}} \renewcommand{\aa}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\cc}{\mathbf{c}} \newcommand{\ee}{\mathbf{e}} \newcommand{\hh}{\mathbf{h}} \newcommand{\m}{\mathbf{m}} \newcommand{\0}{\mathbf{0}} \newcommand{\ve}[1]{\mathbf{#1}} \newcommand{\col}[1]{\ifmmode\begin{bmatrix}#1\end{bmatrix}\else $\begin{bmatrix}#1\end{bmatrix}$\fi} \newcommand{\scol}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} \newcommand{\rref}{\operatorname{rref}} \newcommand{\hide}[1]{{}} \newcommand{\proj}{\operatorname{\mathbf{Proj}}} \newcommand{\Span}{\operatorname{span}} \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\pdt}[2]{\tfrac{\partial #1}{\partial #2}} \newcommand{\pdd}[2]{\dfrac{\partial #1}{\partial #2}} \newcommand{\svdots}{\raisebox{3pt}{$\scalebox{.75}{\vdots}$}} \newcommand{\sddots}{\raisebox{3pt}{$\scalebox{.75}{$\ddots$}$}} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Char}{char} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\disc}{disc} \DeclareMathOperator{\dist}{dist} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\Eth}{Eth} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\Free}{Free} %\DeclareMathOperator{\frob}{frob} %\DeclareMathOperator{\Gal}{Gal} %\DeclareMathOperator{\genus}{genus} %\DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Hom}{Hom} %\DeclareMathOperator{\id}{id} %\DeclareMathOperator{\im}{im} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Mat}{Mat} \DeclareMathOperator{\modulo}{\medspace mod} \DeclareMathOperator{\Norm}{N} %\DeclareMathOperator{\nullity}{nullity} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\Pic}{Pic} %\DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\red}{red} \DeclareMathOperator{\res}{res} \DeclareMathOperator{\sgn}{sgn} %\DeclareMathOperator{\Span}{span} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Split}{Split} \DeclareMathOperator{\Sturm}{Sturm} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\Tate}{Tate} \DeclareMathOperator{\tors}{tors} %\DeclareMathOperator{\tr}{tr} \DeclareMathOperator{\val}{val} \DeclareMathOperator{\Weil}{Weil} \DeclareMathOperator{\sech}{sech} \newcommand{\adjacent}{\leftrightarrow} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SO}{SO} \newcommand{\cm}{\text{,}} %\newcommand{\pd}{\text{.}} \newcommand{\n}{\noindent} \newcommand{\Omicron}{\mathrm{O}} \newcommand{\Zeta}{\mathrm{Z}} \renewcommand{\div}{\mathop{\mathrm{div}}} \renewcommand{\Im}{\mathop{\mathrm{Im}}} \renewcommand{\Re}{\mathop{\mathrm{Re}}} \renewcommand{\ss}{\mathop{\mathrm{ss}}} \newcommand{\elliptic}{\mathop{\mathrm{ell}}} \newcommand{\new}{\mathop{\mathrm{new}}} \newcommand{\old}{\mathop{\mathrm{old}}} \newcommand{\Bs}{\boldsymbol} %\newcommand{\ds}{\displaystyle} %\newcommand{\f}{\mathfrak} \newcommand{\s}{\mathcal} %\newcommand{\A}{\mathbb{A}} %\newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\Fpbar}{\bar{\mathbb{\F}}_p} \newcommand{\G}{\mathbb{G}} \newcommand{\Gm}{\mathbb{G}_{\mathrm{m}}} \newcommand{\N}{\mathbb{N}} \renewcommand{\P}{\mathbb{P}} \newcommand{\Q}{\mathbb{Q}} %\newcommand{\R}{\mathbb{R}} %\newcommand{\R}{\mathbf{R}} \newcommand{\T}{\mathbb{T}} \newcommand{\V}{\mathcal{V}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\E}{\mathbf{E}} \renewcommand{\H}{\mathrm{H}} \newcommand{\M}{\mathbf{M}} \renewcommand{\S}{\mathbf{S}} \newcommand{\var}{\mathbf{Var}} \newcommand{\eps}{\varepsilon} \newcommand{\erf}{\operatorname{erf}} \newcommand{\rar}{\rightarrow} \newcommand{\lar}{\leftarrow} \newcommand{\hrar}{\hookrightarrow} \renewcommand{\iff}{\Longleftrightarrow} \newcommand{\xrar}{\xrightarrow} \newcommand{\rrar}{\longrightarrow} \newcommand{\mt}{\mapsto} \newcommand{\mmt}{\longmapsto} \newcommand{\angles}[1]{\langle #1\rangle} \newcommand{\ceiling}[1]{\lceil #1\rceil} \newcommand{\floor}[1]{\lfloor #1\rfloor} \newcommand{\set}[2]{\{\,#1\,\,|\,\,#2\,\}} \renewcommand{\emph}{\it} \renewcommand{\em}{\emph} $\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}$

Chapter 25

Visualizing the Fourier transform of some basic functions.

In the periodic case we saw that the Fourier transform passes between $L$-periodic functions $f(x)$ of a real variable $x$ and functions $F(n)$ of integers $n$. In the non-periodic setting, a new version of the Fourier transform will pass between functions $f(x)$ of a real variable $x$ and functions $F(\lambda)$ of a real variable $\lambda$. Our focus on the 1-dimensional Fourier transform is sufficient for many signal processing applications and for PDE's with 1 spatial and 1 time dimension (a good warm-up before tackling the full complexities of nature).

Let $f:\R \to \C$ be a function for which $|f(x)|$ decays quickly enough as $|x| \to +\infty$ (so $\int_{\R} |f(x)|\,dx$ converges). The Fourier transform $\widehat{f}:\R \to \C$ is the function defined by $$\widehat{f}(\lambda) = \int_{\R} f(x) e^{-i\lambda x}\,dx$$ (The integrand involves variables $\lambda$ and $x$, but we "integrate over $x$", leaving a dependence on $\lambda$.)

The Fourier transform can also be reversed: For $f(x)$ as above, if $|\widehat{f}(\lambda)|$ decays quickly enough as $|\lambda| \to +\infty$ so that $\int_{\R} |\widehat{f}(\lambda)| \,d\lambda$ converges then the following formula (with suitable interpretation at jump discontinuities of $f(x)$) recovers $f$ from $\widehat{f}$: $$f(x) = \frac{1}{2\pi} \int_{\R} \widehat{f}(\lambda) e^{i\lambda x}\,d\lambda.$$

We also introduce convenient notation for expressing the effect of the Fourier transform on functions when it is unwieldy to use the "$\widehat{(\cdot)}$" symbol. For a function $f(x)$, its Fourier transform $\widehat{f}$ is also denoted as $\cF f$: For a function $f(x)$, its Fourier transform $\widehat{f}$ is also denoted as $\cF f$: $$(\cF f)(\lambda) = \int_{\R} f(x) e^{-i\lambda x}\,dx.$$ For a function $g(\lambda)$, we define its inverse Fourier transform to be $$(\cF^{-1} g)(x) = \frac{1}{2\pi} \int_{\R} g(\lambda) e^{i\lambda x}\,d\lambda.$$

Below we visualize the Fourier transform of some basic functions. You can adjust the parameters using the sliders.

Example 1: Indicator Function
Function

$\sqcap_a(x) = \mathbf{I}_{[-a,a]}(x).$

$\widehat{\sqcap_a}(\lambda)=\dfrac{2\sin(\lambda a)}{\lambda}$.

Parameter


Example 2: Triangular Bump
Function

$\wedge_a(x) = \begin{cases} 1-|x|/a, & |x| \le a, \\ 0, & |x| > a. \end{cases}$

$\widehat{\wedge_a}(\lambda) = a \left(\dfrac{\sin(\lambda a/2)}{\lambda a/2}\right)^2.$

Parameter



Example 3: Exponential Decay
Function

$f_a(x) = e^{-a|x|}.$

$\widehat{f_a}(\lambda) = \dfrac{2a}{a^2 + \lambda^2}$.

Parameter


Example 4: Gaussian
Function

$f_a(x) = e^{-ax^2/2}$.

$\widehat{f_a}(\lambda) = \sqrt{\dfrac{2\pi}{a}}e^{-\lambda^2/2a}.$

Parameter